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Stabilizing a breather in the damped nonlinear Schrodinger equation driven
by two frequencies
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In the framework of adiabatic perturbation theory and energy balance conditions, we analyze the
possibility of stabilizing a breatherlike state (a bound state of two solitons with coinciding centers)
in the damped (1+1)-dimensional cubic nonlinear Schrodinger equation by a two-frequency ac drive.
The analytic predictions for the threshold of driving strengths above which a stable breather exists
are in good agreement with those measured in numerical simulations.

PACS number(s): 05.45.+b, 03.40.Kf, 42.81.Dp, 42.50.Rh

The damped, ac-driven cubic nonlinear Schrédinger
(NLS) equation,

U + U + 2|u)?u = —iou + ee™t, (1)
is a fundamental model describing a number of nonlinear
dynamical systems in solid-state physics, plasma, optics,
etc. (see, e.g., the review paper [1]). It is well known
that, if the frequency w is positive and the amplitude of
driving € exceeds the threshold value

€thr = %a\/“_), (2)

which is proportional to the dissipative constant a, Eq.
(1) admits stable localized solutions in the form of a soli-
ton with the internal frequency w phase-locked to the
driving frequency [2]:

u(z,t) = nsech(nz)e“t=4) (3)
where 7 = \/w and

esing = 2—an.
™

Strictly speaking, the solution is the above soliton rid-
ing on top of a small amplitude oscillating background.
This result was obtained analytically by means of per-
turbation theory [2], which is applicable provided a < w
and € < w¥2. At sufficiently large €, the dynamics of
the perturbed NLS system governed by Eq. (1) becomes
very complicated. This complexity may be summarized
as the onset of low-dimensional dynamical chaos [3].

The unperturbed NLS equation, being exactly inte-
grable, admits not only the exact one-soliton, but also
multisoliton solutions. In particular, the initial condi-
tion,

ug(z) = Nnsech(nzx), (4)

where N is a positive integer, gives rise to the so-called
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breather, or N-soliton solutions, which may be regarded
as a nonlinear superposition of N different solitons with
coinciding centers. A fundamental difference between the
N-soliton breather and the fundamental (N = 1) soliton
is the fact that the breather has shape oscillations, i.e.,
|u(z)| is a periodic function of time. In particular, for
the case of N = 2, the analytical solution is [4]

4[cosh(3z) + 3e*®t cosh(z)] it
cosh(4z) + 4 cosh(2z) + 3cos(8t) ’

u(z,t) =

(5)

for n = 1. Due to the scaling property of the NLS, we
can always rescale n to 1. This breather solution has a
carrier-wave frequency w. = 1 and shape-mode frequency
ws = 8we.

From numerical simulations of Eq. (1), it is well known
that the perturbed NLS equation cannot support any
type of breathers but the fundamental soliton. Ana-
lytically, perturbation-induced evolution of an N = 2
breather was considered in Ref. [5]. It has been demon-
strated that even under the action of purely Hamilto-
nian perturbations, which are always much gentler than
the dissipative perturbations in Eq. (1), the breather de-
grades into a single-soliton state through emission of ra-
diation. In the dissipatively perturbed model, the degra-
dation will be much faster.

Nevertheless, one can expect that existence of a
breather in a damped system may be supported by a
two-frequency drive. In the simplest case, this type of
drive can be described by the equation

U + Uz + 2|ul?u = —iau + €,6™1 + e3e'?t.  (6)

Notice that, as long as w; # ws, the phase difference be-
tween two drives can always be removed by a translation
in time and a trivial gauge transformation in u(z,t). It
should be noted that dissipative models with multifre-
quency drivers were considered earlier [6, 7] in a param-
eter region where the amplitudes €,, n = 1, 2, were suffi-
ciently large in order to analyze the onset of spatiotem-
poral chaos in these models. Here, we are interested in
the case of €, sufficiently small, where dynamical chaos is
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not expected, but the two-frequency driver with appro-
priate values of its frequencies and amplitudes should be
able to stabilize a breather in a form close to the breather
of the unperturbed NLS system [Eq. (5)].

In the following, we analyze this possibility of locking
a breatherlike state with the two-frequency driver. The
unperturbed NLS has the energy,

H= / (uaf? = Juf*)dz,

and the norm,

N=/|u|2dz,

which are both conserved. For the perturbed NLS, Eq.
(6), we have

+oo +oo0
i _ —-Za/ dz Im{uu;} — 2/ dz Re{f*u.},

dt —oo —o0
(7

+o0
(Z_]:, =—2aN + 2/ dzIm{fu*},

—00o

where f = €1t + e;e*t. In the following adia-
batic perturbation calculation, we use the ansatz that
the breather solution in Eq. (6) assumes the form

4[cosh(3z) + 3ei(wst+$1=¢2) cosh(z)]
cosh(4z) + 4 cosh(2z) + 3 cos(w,t + ¢1 — ¢2)
xei(wct_d’l)’ (8)

u(z,t) =

where w, = 1, w, = 8w.. By noting the structure of the
breather [Eq. (8)], we choose w; = w, to phase-lock the
carrier-wave part of Eq. (5) and wz — w; = w, to phase-
lock the shape mode. Furthermore, phase-locking de-
mands that the energy and the norm be balanced in one
period of shape oscillation, i.e., there are no net changes
during one period [8, 9]:

dH
<7{>—°’

dN
<E>=°’

where () is the time average over one period'T’ = 27 /w,.
From Eq. (9), a straightforward calculation leads to

(9)

l4a = I161 sin ¢1 + I262 sin ¢2,
(10)
18a = 9I1¢€; sin @; + Iz€z sin ¢,

where

e [ AT 1) ool
—o0 31 —a(zx)?
~0.950 45,
I = /+°° dm3cosh(3a:)[v 1—a(z)? — 1] 4+ 9cosh(z)a(z)
o Vi—a@r

~ 7.0582,
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(@)= :
ne) = cosh(4z) + 4 cosh(2z)
We can readily conclude from Eq. (10) that
. a
€1sin¢; = EI—I’
(11)
. 27a
€2sin gy = 2_1—2"

and the thresholds for the strength of the drivers are
€1,thr = a/(2I1) ~ 0.52610, €2thr = 27&/(212) ~
1.9127a, below which a breather state is not sustain-
able by the two-frequency drive. We note that for
the fundamental soliton, the solution has the structure
u(z,t) = u(z)exp(iwt). With this ansatz, the rate of
change of the energy is related to that of the norm by

dH dN

—_— = —w—.

dt dt
Hence, to obtain the threshold in Eq. (2), it suffices to
consider only one of the equations in Eq. (7) in the adi-
abatic perturbation theory.

We have performed direct numerical simulations for
the model, Eq. (6), on a sufficiently long system with
periodic boundary conditions. The functional form, Eq.
(4), was used as the initial condition. Figure 1 shows a
locked breather state. From the above perturbation the-
ory, the locked breather states do not exist in the region
€1 < 0.0526, and €2 < 0.191 for @ = 0.1. Figure 2 shows
that the thresholds measured from the numerical sim-
ulations (crosses), and the theoretical predictions (solid
lines) are in excellent agreement. For €; > 0.14, along the
direction €; =~ 0.19, we did not observe locked breather
states. For es > 0.35, along the direction €; =~ 0.053,
we observed some windows of €; in which it is still pos-
sible to lock a breather state. Even for these breather
states which are significantly deformed away from the
unperturbed breather form, the threshold estimates still
hold very well. Those initially breathing states which
are outside the locking region generally decay to funda-
mental soliton(s). They may further decay to a radia-
tion background and eventually die out. In addition to

FIG. 1.
w1 =1, w2 =9, a = 0.1. Plotted here is |u(z, t)].

A breather stabilized by a two-frequency drive:
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FIG. 2. Thresholds for locking a breather state with a =
0.1 (see text). “X,” from numerical simulations; solid lines,
the theoretical predictions.

wy =9, for wy = 8 and w; = 10, we have also observed
locked breather states with the initial condition Eq. (4).
This implies that the locking phenomenon is more gen-
eral than merely locking to the exact solution [Eq. (5)]
adiabatically. For frequencies far from w, = 9, we were
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not able to lock any breathing states with the initial con-
dition Eq. (4).

In summary, we have demonstrated that the two-
frequency drive with properly selected frequencies and
sufficiently large amplitudes is able to support breather-
like states in the damped NLS system. This observation
clearly demonstrates that, even far from the onset of dy-
namical chaos, the dynamics of simple models like that
based on Eq. (6) can be complicated. As for physical
realizations of the effect considered, it can manifest itself
through measurements of the energy absorption rate in
systems described by the damped NLS system (charge
density waves [2], etc.) driven by a superposition of two
ac fields with different frequencies. To derive the thresh-
olds for sustaining these breather states, we have applied
the adiabatic perturbation theory and energy-balance ar-
guments to the energy and the norm of the system. It is
in contrast to the case of locking one-soliton states, where
only one of them is needed. Direct numerical simulations
showed that the analytic predictions for the thresholds
obtained this way agree very well with the observed ones.
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FIG. 1. A breather stabilized by a two-frequency drive:
w; =1, wz; =9, a = 0.1. Plotted here is |u(z, t)|.



